PFAFFOSIDES AND NORTRITERPENOID SAPONINS FROM PFAFFIA PANICULATA

Nobushige Nishimoto*, Shiro Nakai*, Noriko Takagi*, Shinichi Hayashi*, Tsunematsu Takemoto†, Shizuo Odashima‡, Haruhisa Kizu§ and Yoshikazu Wada||

*Research and Development Division, Rohto Pharmaceutical Co, Ltd, Tatsumi Nishi, Ikuno-ku, Osaka, 544, Japan, †Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770, Japan, ‡Department of Pathology, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, 920-02, Japan, §School of Pharmacy, Hokuriku University, Kanagawa-machi, Kanazawa, 920-11, Japan, ||Central Research Division, Takeda Chemical Industries Ltd, Jusohonmachi, Yodogawa-ku, Osaka, 532, Japan

(Received 9 May 1983)

Key Word Index—Pfaffia paniculata, Amaranthaceae, Brazil ginseng, nortriterpenoid saponin, pfaffic acid, pfaffosides

Abstract—Three new nortriterpene glucuronides named pfaffosides A, B and C have been isolated from roots of *Pfaffia* paniculata. Their structures have been established as 3β -O- $[\beta$ -D-xylopyranosyl- $(1 \rightarrow 2)$ - β -D-glucuronopyranosyl]-pfaffic acid- $(28 \rightarrow 1)$ - β -D-glucuronopyranosyl] ester and 3β -O- $[\beta$ -D-glucuronopyranosyl]-pfaffic acid- $(28 \rightarrow 1)$ - β -D-glucopyranosyl ester, respectively, based on their chemical and spectroscopic properties

INTRODUCTION

The roots of Pfaffia paniculata Kuntze, known in Brazil as 'Brazil ginseng', have been used as a tonic, an aphrodisiac and as a folk medicine for antidiabetic purposes [1] We have investigated the constituents of this plant, and isolated, besides the new nortriterpene pfaffic acid [2], three new pfaffic acid saponins named pfaffosides A, B and C and established their structures as 1-4 respectively Furthermore a mixture of stigmasterol and sitosterol, their glycosides and also allantoin were identified. The inhibitory effects of 1-4 on the growth of cultured tumor cells have been investigated

RESULTS AND DISCUSSION

The roots of *Pfaffia paniculata*, collected in the Goias area of Brazil, were treated with hot methanol and partitioned in an n-butanol-water mixture. The water insoluble portion of the n-butanol layer was chromatographed on silica gel to yield pfaffic acid and the mixture of stigmasterol and sitosterol. The water soluble portion of the n-butanol layer was passed through a column of charcoal and purified by chromatography on silica gel to give pfaffosides A, B and C, allantoin and a mixture of stigmasteryl- β -D-glucoside and sitosteryl- β -D-glucoside

Pfaffic acid (1), $C_{29}H_{44}O_3$, mp 285–286°, $[\alpha]_D^{22} + 109 2^\circ$ (c 0 72, CHCl₃) exerted inhibitory effects on the growth of cultured tumor cells (Fig 1) The structure was finally established as being 3β -hydroxy-16,20-cyclo-30-norolean-12-en-28-oic acid by means of X-ray crystallographic analysis of the methylate We have reported these properties and the structure in a previous communication [2]

Pfaffoside A (2), $C_{40}H_{60}O_{13}$ 3H₂O, mp 268°, $[\alpha]_D^{22}$ + 14 8° (c 1 85, MeOH), contained hydroxyl groups

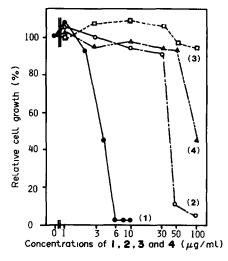


Fig 1 Inhibitory effects of pfaffic acid (1), pfaffoside A (2), pfaffoside B (3) and pfaffoside C (4) on the growth of melanoma (B-16)

 $(3400 \, \mathrm{cm}^{-1})$ and carboxyl groups $(1730 \, \mathrm{and} \, 1700 \, \mathrm{cm}^{-1})$, as judged from the IR spectrum. Acid hydrolysis of 2 yielded 1 as the aglycone and xylose and glucuronic acid as the sugar moieties. The hepta-O-methyl derivative of 2, prepared by the Kuhn method [3], exhibited a molecular ion peak at m/z 846, peaks due to methyl pfaffate at m/z 246 and 437, and the characteristic peaks due to permethylated terminal pentose and pentose—hexuronic acid moieties at m/z 175 and 393, respectively, in the mass spectrum. The 13 C NMR spectrum of 2 showed 40 carbon signals. (Table 1) Of these, 29 were assigned to the

140 N Nishimoto et al

aglycone 1 in consideration of the glycosylation shift of the α - and β -carbon atoms of the aglycone alcohol [4, 5] The remaining 11 signals were attributable to the two sugar moieties, whose anomeric carbon signals appeared at $\delta 1054$ and 1070 (Table 1) A comparison of the ¹³C NMR chemical shifts due to the sugar moieties of 2 with those due to C-1, C-2 and C-3 of the inner glucopyranosyl unit of ginsenoside Rb₂ [6], C-4, C-5 and C-6 of the glucuronopyranosyl unit of methyl 3β -O- $[\beta$ -Dglucuronopyranosyl]-oleanate [7] and the xylopyranosyl unit linked to the glucopyranosyl unit of hovenoside G [8] isolated from the seeds of Zizyphus jujuba revealed that the signals due to the sugar moiety of 2 were attributable to the 3-O- $[\beta$ -D-xylopyranosyl- $(1 \rightarrow 2)$ - β -Dglucuronopyranosyl] group (Table 1) In the ¹H NMR spectrum of 2, two anomeric proton signals were observed at $\delta 501$ (d, J = 6.8 Hz) and 527 (d, J = 56 Hz), supporting the β -configurations of the glucuronic acid and xylose moieties In addition, consideration of molecular optical rotation by the application of Klyne's rule [9] supported the β -anomeric configurations of all sugar linkages (found $[M]_D = +111^\circ$, calc $[M]_D = +168^\circ$) Accordingly, the structure of 2 was established as 3β -O- $[\beta$ -Dxylopyranosyl- $(1 \rightarrow 2)$ - β -D-glucuronopyranosyl]-pfaffic acıd

Pfaffoside B (3), $C_{46}H_{70}O_{18}$ $3H_2O$, mp 255-260°, $[\alpha]_{\rm D}^{22}-1.8^{\circ}$ (c 1.05, MeOH), contained hydroxyl groups (3400 cm^{-1}) , carboxyl and ester groups (1730 cm^{-1}) , as judged from the IR spectrum Acid hydrolysis of 3 yielded 1 as the aglycone and xylose, glucuronic acid and glucose as the sugar moieties. On hydrolysis with 1 N potassium hydroxide, 3 yielded 2 The results suggested that one glucose residue was attached to the carboxyl group of either pfaffic acid or glucuronic acid in the ester form. The deca-O-methyl derivative of 3, prepared by the Kuhn method [3], exhibited a molecular ion peak at m/z 1050, the characteristic peaks due to permethylated terminal pentose, pentose-hexuronic acid and terminal hexose moieties at m/z 175, 393 and 219, respectively, the peak due to the retro-Diels-Alder fragmentation of ring C at m/z 450, and the peaks due to the elimination of pentose-hexuronic acid and hexose-carboxyl moieties from the molecular ion at m/z 641 and 787, respectively, in the mass spectrum A comparison of the 13C NMR spectrum of 3 with that of 2 revealed that the chemical shift of C-28 was displaced upfield by 3 6 ppm (Table 1) The ¹³C NMR spectrum of the glucose moiety of 3 was superimposable with that of chikusetsu saponin IV

Table 1 ¹³C NMR chemical shifts of pfaffic acid (1), pfaffoside A (2), pfaffoside B (3) and pfaffoside C (4)

Carbon	(1)	(2)	(3)	(4)
1	39 1 t	38 7 t	38 7 t	38 7 t
2	28 2 t	26 6 t	266 t	26 6 t
3	78 3 d	89 4 d	89 4 d	89 2 d
4	39 5 s	39 6 s	39 6 s	39 6 s
5	56 1 d	56 0 d	56 0 d	55 9 d
6	189 t	18 5 t	187 t	18 5 t
7	33 9 t	33 8 t	33 3 t	33 3 t
8	39 5 s	39 6 s	396s	40 1 s
9	48 0 d	477d	477d	478d
10	37 5 s	369s	369s	37 0 s
11	23 5 t	23 3 t	23 4 t	23 4 t
12	120 2 d	120 3 d	121 1 d	121 1 d
13	145 6 s	145 6 s	144 7 s	144 7 s
14	40 9 s	407s	409s	40 9 s
15	29 2 t	29 1 t	29 0 t	29 O t
16	52 2 d	52 1 d	51 8 d*	51 9 d*
17	56 5 s	56 4 s	56 2 s	56 2 s
18	50 2 d	52 1 d	52 2 d*	52 0 d*
19	41 6 t	41 6 t	41 4 t	41 4 t
20	44 5 s	44 4 s	44 4 s	44 5 s
21	39 5 t	39 5 t	39 O t	39 1 t
22	32 4 t	32 2 t	32 2 t	32 2 t
23	30 3 q	302q	30 1 q	30 1 q
24	164 <i>q</i>	162q	162 <i>q</i>	168 <i>q</i>
25 25	15 5 q	153q	154q	154q
26	170q	167q	173q	173q
20 27	-	•	•	
28	28 8 <i>q</i> 177 5 s	27 8 q	27 8 <i>q</i> 174 2 s	28 2 q
29 29	187q	1778s		1742s
29 Glucuronic acid		18 7 q	18 5 q	18 5 q
1		10643	10643	107.4.3
	(105 0)† [6]	105 4 d	105 4 d	107 4 d
2	(83 0)† [6]	83 6 d	83 7 d	75 6 d
3 4	(78 1)† [6]	77 4 d*	77 5 d*	78 3 d
	(72 7)† [7]	73 2 d	73 2 d	73 6 d
5 6	(76 8)† [7]	778d*	778d*	779d
	(170 0)† [7]	1729s	1729s	173 3 s
Xylose	(10C 7)+ F07	10701	10711	
1	(106 7)† [8]	107 0 d	107 1 d	_
2	(75 9)† [8]	76 6 d	766d	
3	(78 0)† [8]	78 2 d	78 2 d	_
4	(70 6)† [8]	71 1 d	71 2 d	_
5 Glucos	(67 5)† [8]	67 5 t	67 6 t	_
Glucose	/OF 7\ \ F#7		052 '	0501
1	(95 7)† [7]	_	957d	958d
2	(75 0)† [7]	_	74 2 d	74 2 d
3	(78 5)† [7]	_	79 0 d	79 1 d
4	(71 1)† [7]	_	71 4 d	71 4 d
5	(78 7)† [7]	_	78 9 d	79 0 d
6	(62 3)† [7]	_	62 4 t	62 5 t

 13 C NMR were recorded on a JEOL FX-100 FT-NMR spectrometer (25 15 MHz) The chemical shifts were expressed in δ -values in ppm relative to TMS used as internal standard

^{*}These values are interchangeable within their respective columns

[†]The chemical shifts in parentheses were those of corresponding position in ginsenoside Rb_2 [6], methyl 3β -O-[β -D-glucuronopyranosyl]-oleanate [7], hovenoside G [8] and chikusetsu saponin IV methyl ester [7]

methyl ester [7] (Table 1) The fragmentation pattern in the mass spectrum and the ^{13}C NMR spectrum of 3 suggested that D-glucopyranose was attached at C-28 of 2 In the ^{14}H NMR spectrum of 3, three anomeric proton signals were observed at $\delta 4$ 99 (d, J=6 8 Hz), 5 25 (d, J=6 1 Hz) and 6.18 (d, J=7 1 Hz) supporting the β -configurations of the glucuronic acid, xylose and glucose moieties Further, the β -D-glucopyranosyl ester linkage was supported by application of Klyne's rule [9] [M]_D (3) - [M]_D(2) = -127° , [M]_D (methyl α -D-glucopyranoside) = $+276^{\circ}$ [10], [M]_D (methyl β -D-glucopyranoside) = -62° [10] Based on the above results, the structure of 3 was established as 3β -O-[β -D-xylopyranosyl-(1 \rightarrow 2)- β -D-glucoropyranosyl]-pfaffic acid-(28 \rightarrow 1)- β -D-glucopyranosyl ester

Pfaffoside C (4), $C_{41}H_{62}O_{14}$ $3H_2O$, mp 255–226°, $[\alpha]_D^{22} + 19.7^\circ$ (c 0.60, MeOH), contained hydroxyl groups (3400 cm⁻¹), carboxyl and ester groups (1730 cm⁻¹), as judged from the IR spectrum Acid hydrolysis of 4 yielded 1 as the aglycone and glucuronic acid and glucose as the sugar moieties Enzymatic hydrolysis of 3 using crude naringinase yielded 4, designated now as the structure lacking β -D-xylose from 3 Further, a comparison of the ¹³C NMR spectrum of 4 with that of 3 revealed that the signals due to C-1, C-2 and C-3 of the β -p-glucuronopyranosyl moiety were shifted by +20, -81 and +08 ppm, respectively, while other corresponding signals were almost unshifted (Table 1) Therefore, it is suggested that β -D-xylose is absent from C-2 of the β -Dglucuronopyranosyl moiety in 3 In the ¹H NMR spectrum of 4, two anomeric proton signals were observed at $\delta 5 04 (d, J = 6.6 \text{ Hz})$ and $\delta 22 (d, J = 6.6 \text{ Hz})$ supporting the β -configurations of the glucuronic acid and glucose moieties In addition, the consideration of the molecular optical rotation by the application of Klyne's rule [9] supported the β -anomeric configurations of all sugar linkages (Found $[M]_D = +153^\circ$, Calc $[M]_D = +213^\circ$) The above results led to the formulation of 4 as 3β -O- $[\beta$ -D-glucuronopyranosyl]-pfaffic acid-(28 \rightarrow 1)- β -D-glucopyranosyl ester

It is interesting that 2, 3 and 4 are novel structures based on nortriterpene glucuronides and that 2 and 4 show inhibitory effects on the growth of cultured tumor cell melanomas (B-16) at concentrations of ca 50 and ca 100 μ g/ml, respectively, using the method devised by Takemoto et al [11] (Fig 1)

EXPERIMENTAL

Mps are uncorr ¹H NMR and ¹³C NMR spectra were taken in pyridine-d₅ using TMS as internal standard EIMS (direct inlet) was at 70 eV Crude naringinase (Lot No N-8631) was commercially available TLC was conducted on Kieselgel 60 F₂₅₄ (Merck) using solvent A CHCl₃-MeOH-H₂O (65 35 10, lower phase), solvent B CHCl₃-MeOH (12 1), solvent C n-BuOH-AcOH-H₂O (4 1 1), spots were detected by spraying with 10% H₂SO₄, followed by heating

Plant material Roots of Pfaffia paniculata were collected in the Goias area of Brazil and identified by Prof G Akisue and Prof F Oliveira at the University of São Paulo in Brazil

Isolation of pfaffic acid (1), the mixture of stigmasterol and sitosterol, their glucosides, allantoin and pfaffosides (2, 3 and 4). The air-dried roots (18 kg) were crushed and treated with hot MeOH (3×2001) Evaporation of the solvent under red pres yielded a brown syrup (2 kg). The MeOH extract (820 g) was suspended in H₂O (500 ml) and treated with n-BuOH (5

× 500 ml) The organic layer was evaporated under red pres to yield a brown, gummy mass (140 g), which was divided into water soluble and insoluble portions The water insoluble portion (27 g) was chromatographed on a silica gel (Wakogel C-200) column (700 g) with a gradient of hexane-AcOEt-MeOH Removal of the solvent from the elute with hexane-AcOEt (1 5 \rightarrow 0 5), followed by recrystallization from EtOH, gave a mixture of stigmasterol and sitosterol (280 mg) Removal of the solvent from the eluate with AcOEt-MeOH (20 $0 \rightarrow 20$ 1) then yielded the residue (15 g) containing 1 Compound 1 was isolated from the above residue by CC on silica gel (500 g) with a gradient of MeOH in CHCl₃ The separation was monitored by TLC (R_f) = 044, solvent B) Pure 1 was obtained as colourless needles (180 mg) after recrystallization from MeOH The water soluble portion was adsorbed on a charcoal (Wako) column (350 g) Elution was performed with H₂O (500 ml), EtOH (500 ml), EtOH-AcOEt (3 7, 71), EtOH-AcOEt (2 8, 51), EtOH-AcOEt (1 9, 31) and AcOEt (21) Evaporation of the solvent from the elute with EtOH-AcOEt (3 7 -> 0 7) afforded the crude saponin (19 g) as a pale yellow powder. The crude saponin (5 g) was chromatographed on a silica gel column (150 g) and eluted with CHCl3-MeOH (20 1, 21), CHCl3-MeOH (10 1, 11), CHCl3-MeOH-H₂O (8 2 0 5, lower phase, 31) to afford besides noninvestigated pfaffosides a mixture of stigmasteryl-β-D-glucoside and sitosteryl-β-D-glucoside (460 mg) which were purified by elution recrystallization from EtOH Further CHCl3-MeOH-H2O (7 3 1, lower phase, 61) afforded crude 2, 4 and 3, other non-investigated pfaffosides and allantoin (23 mg), purified by recrystallization from MeOH-AcOEt Crude 2, 4 and 3 were repeatedly subjected to CC on silica gel and eluted with CHCl₃-MeOH-H₂O (7 3 1, lower phase) or n-BuOH-AcOEt-H2O (4 1 2, upper phase) to afford chromatographically pure pfaffosides Since the pfaffosides obtained as above were still contaminated with the carboxylate form (IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹ 1610), they were dissolved in H₂O, acidified to ca pH 4 or treated with a cation-exchange resin (Amberlite IR-120B), and extracted with n-BuOH satd with H₂O The n-BuOH layer was washed with H2O and evaporated in vacuo to dryness Pure samples of 2, 4 and 3 were obtained from MeOH-AcOEt as needles (85 mg), amorphous solid (35 mg) and fine crystals (170 mg), respectively

Pfaffic acid (1) Mp 285–286°, $[\alpha]_D^{22} + 109 \, 2^\circ$ (c 0 72, CHCl₃) (Found C, 79 3, H, 10 1 C₂₉H₄₄O₃ requires C, 79 0, H, 10 1%) IR, MS, ¹H NMR and ¹³C NMR spectra were described previously [2]

Mixture of stigmasterol and sitosterol. The mixture was identified by GC and TLC (GC detector, FID, carrier gas, N_2 at 50 ml/min, inj. temp., 300°, column temp., 230°, packed column, $1 \text{ m} \times 3 \text{ mm}$, 1.5 % SE-30, stigmasterol, $R_t = 16 \text{ min}$, sitosterol, $R_t = 18.5 \text{ min}$) (TLC solvent B, $R_f = 0.61$)

Pfaffoside A (2) Mp 268°, $\left[\alpha\right]_{D}^{22} + 148°$ (c 185, MeOH) (Found C, 601, H, 81 C₄₀H₆₀O₁₃ 3H₂O requires C, 59 8, H, 83%) IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹ 3400 (OH), 1730 and 1700 (-CO₂H) ¹³C NMR Table 1

Pfaffoside B (3) Mp 255–260°, $[\alpha]_D^{22} - 18^\circ$ (c 1 05, MeOH) (Found C, 57 5, H, 80 C₄₆H₇₀O₁₈ 3H₂O requires C, 57 3, H, 79%) IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹ 3400 (OH), 1730 (–CO₂– and –CO₂H) ¹³C NMR Table 1

Pfaffoside C (4) Mp 225–226°, $[\alpha]_{22}^{22}$ + 19 7° (c 0 60, MeOH) (Found C, 58 8, H, 79 C₄₁H₆₂O₁₄ 3H₂O requires C, 59 1, H, 8 2%) IR $\nu_{\rm max}^{\rm KB}$ cm⁻¹ 3400 (OH), 1730 (–CO₂– and –CO₂H) ¹³C NMR Table 1

Allantoin was identified by mmp, HPLC and the comparison of IR spectra with an authentic sample (HPLC detector, 220 nm, mobile phase, $1/50 \text{ M KH}_2\text{PO}_4-1/5\text{ N HCl}$ (pH 3 5), flow rate, 1.5 ml/min, column, $30 \text{ cm} \times 3.9 \text{ mm}$ packed

N Nishimoto et al

with Nucleosil C₁₈, R_t 22 min)

Mixture of stigmasteryl- β -D-glucoside and sitosteryl- β -D-glucoside. The mixture was indistinguishable from the authentic samples by TLC and the comparison of IR spectra. (TLC solvent A, $R_f = 0.63$) Acid hydrolysis of the mixture (11.7 mg) yielded a mixture (6.7 mg) of stigmasterol and sitosterol as aglycones, identified by GC, TLC and the comparison of IR spectra with authentic samples, and D-glucose as the sugar component, identified by TLC and PC with an authentic sample (TLC solvent C, R_f , 0.30, PC Toyo Filter Paper No. 50, solvent C, R_f , 0.12)

Acid hydrolysis of pfaffosides A (2), B (3) and C (4) Compounds 2 (15 mg), 3 (12 mg) or 4 (12 mg) were refluxed with 20% $\rm H_2SO_4-MeOH$ (1 1, 7 ml) for 4 hr Reaction mixtures were concd under red pres to remove MeOH Addition of $\rm H_2O$ gave a white ppt, which was collected by filtration and crystallized from MeOH to give colourless needles (5 mg, 3 mg and 4 mg, respectively) identical in every aspect with 1 obtained directly from Pfaffia paniculata (GC detector, FID, carrier gas, $\rm N_2$ at 50 ml/min, inj temp, 300°, column temp, 260°, packed column, 1 m × 3 mm 1 5% SE 30; $R_{\rm p}$, 10 6 min) The aq filtrate was concdunder red pres, adjusted to pH 5–6 with aq satd Ba(OH)₂ and centrifuged The supernatant was further concd under red pres and subjected to TLC to identify the sugar components by comparison with authentic samples (TLC solvent A, glucuronic acid, $R_f = 0.02$, xylose, $R_f = 0.18$, glucose, $R_f = 0.10$)

Alkalı hydrolysis of pfaffoside B (3) A soln of 3 (100 mg) in 1 N KOH (7 ml) was heated under N_2 gas flow at 95° for 3 hr The reaction mixture was cooled to room temp, neutralized with 1 N HCl, and extracted with n-BuOH The extract was washed with H_2O and evaporated in vacuo The residue was repeatedly recrystallized from MeOH-AcOEt to afford colourless needles (65 mg) identical with 2 by mmp, TLC, IR and elemental analysis (TLC solvent A, R_1 , 0 14)

Enzymatic hydrolysis of pfaffoside B (3) In accordance with the method of Kitagawa et al [12], enzymatic hydrolysis of 3 (147 mg), for 12 hr using crude naringinase (2 g), afforded 4 (63 mg), identified by mmp, TLC, elemental analysis and IR comparison with an authentic sample (TLC solvent A, R_f , 0 11)

Per-O-methylation of pfaffosides A (2) and B (3) Following the method of Kondo et al [10], 2 (40 mg) and 3 (200 mg) were methylated by the Kuhn procedure

Per-O-methyl pfaffoside A 17 mg, mp 85–87° (crystals from aq EtOH) (Found C, 66 0; H, 8 8 $C_{47}H_{74}O_{13}$ requires C, 66 6, H, 8 8%) IR $\nu_{\rm max}^{\rm KBr}$ cm $^{-1}$ 1745 (-CO₂-) EIMS (probe) 70 eV, m/z (rel int) 846 [M] + (0 0), 437 [M - $C_{17}H_{29}O_{11}$] + (9 8), 393 [$C_{17}H_{29}O_{10}$] + (2 3), 246 [$C_{16}H_{22}O_2$] + (100), 175 [$C_8H_{15}O_4$] + (91 2)

Per-O-methyl pfaffoside B 85 mg, mp 230–232° (crystals from aq EtOH) (Found C, 64 0, H, 8 9 $C_{56}H_{90}O_{18}$ requires C, 64 0; H, 8 6%) IR v_{max}^{KBr} cm $^{-1}$ 1760 and 1750 (–CO₂–) EIMS (probe) 70 eV, m/z (rel int) 1050 [M] $^+$ (0 0), 787 [M – $C_{11}H_{19}O_7$] $^+$ (0 2), 641 [M – $C_{17}H_{29}O_{11}$] $^+$ (0 9), 450 [$C_{25}H_{38}O_7$] $^+$ (2 9), 393 [$C_{17}H_{29}O_{10}$] $^+$ (1 8), 219 [$C_{10}H_{19}O_5$] $^+$ (25 9), 175 [$C_8H_{15}O_4$] $^+$ (100)

Inhibitory effects of pfaffic acid (1) and pfaffosides 2, 3 and 4 on the growth of melanoma (B-16) Melanoma (B-16) cells were propagated in a culture medium composed of 70% L-15 and 30% Ham's F-10, supplemented with 2% fetal bovine serum, so that the prepared medium afforded 50% growth of the melanoma (B-16) cells Cells were plated at 1×10^5 cells per 60 mm dish in 5 ml of the culture medium preparations containing 1, 2, 3 and 4, supplemented with 2% fetal bovine serum and incubated at 37° in 5% CO₂ and 95% air Four days after plating, the cells were washed twice with 5 ml saline, treated with 0.5 ml of 0.125% trypsin in calcium- and magnesium-free Hank's soln, and resuspended in 4.5 ml of saline. The samples were counted in a Toa Microcellcounter CC-108

REFERENCES

- 1 Oliveira, F, Akisue, G and Akisue, M K (1980) An Farm Quim S Paule 20, 261
- 2 Takemoto, T, Nishimoto, N, Nakai, S, Takagi, N, Hayashi, S, Odashima, S and Wada, Y (1983) Tetrahedron Letters 1057
- 3 Kuhn, R (1955) Angew Chem 67, 32
- 4 Kasai, R, Suzuo, M, Asakawa, J and Tanaka, O (1977) Tetrahedron Letters 175
- 5 Tori, K, Seo, S, Yoshimura, Y, Arita, H and Tomita, Y (1977) Tetrahedron Letters 179
- 6 Besso, H, Kasai, R, Saruwatari, Y, Fuwa, T and Tanaka, O (1982) Chem Pharm Bull (Tokyo) 30, 2380
- 7 Takebe, S, Takeda, T and Ogihara, Y (1980) Shoyaku Zasshi 34 69
- 8 Inoue, O, Ogihara, Y and Yamasakı, K (1978) J Chem Research (S) 144
- 9 Klyne, W (1950) Biochem J 47, xli
- 10 Kondo, N, Marumoto, Y and Shoji, J (1971) Chem Pharm Bull (Tokyo) 19, 1103
- 11 Takemoto, T, Arihara, S, Odashima, S, Nishikawa, K, Takagi, N, Nishimoto, N and Hayashi, S (1982) Abstract Papers, the 102nd Annual Meeting of the Pharmaceutical Society of Japan, Osaka, April, p 585
- 12 Kitagawa, I, Yamanaka, H, Nakanishi, T and Yosioka, I (1977) Chem Pharm Bull (Tokyo) 25, 2430